Abstract

Acquiring knowledge about the relationship between stimulus conditions, one’s own actions, and the resulting consequences or effects, is one prerequisite for intentional action. Previous studies have shown that such contextualized associations between actions and their effects (S-R-E associations) can be picked up very quickly. The present study examined how such weakly practiced associations might affect overt behavior during the process of initial learning and during subsequent retrieval, and how these two measures are inter-related. We examined incidental (S-)R-E learning in the context of trial-and-error S-R learning and in the context of instruction-based S-R learning. Furthermore, as a control condition, common outcome (CO) learning blocks were included in which all responses produced one common sound effect, hence precluding differential (S-)R-E learning. Post-learning retrieval of R-E associations was tested by re-using previously produced sound effects as novel imperative stimuli combined with actions that were either compatible or incompatible with the previously encountered R-E mapping. The central result was that the size of the compatibility effect could be predicted by the size of relative response slowing during ongoing learning in the preceding acquisition phase, both in trial-and-error learning and in instruction-based learning. Importantly, this correlation was absent for the CO control condition, precluding accounts based on unspecific factors. Instead, the results suggest that differential outcomes are “actively” integrated into action planning and that this takes additional planning time. We speculate that this might be especially true for weakly practiced (S-)R-E associations before an initial goal-directed action mode transitions into a more stimulus-based action mode.

Highlights

  • Common sense as well as an extensive body of literature suggests that higher organisms can learn to associate perceived changes in the environment with their own actions and use this acquired knowledge to actively pursue these environmental effects (E) by choosing the right action in a given context

  • differential outcomes” (DO) can only start contributing to response selection from SRep2 onward as subjects need to complete stimulus repetitions (SRep) level 1 to know which specific DO is produced by which specific response

  • SRep1 response slowing might be related to the additional effort to encode (S-)R-E associations once a subject is realizing that the present block involves DOs instead of common outcome (CO)

Read more

Summary

Introduction

Common sense as well as an extensive body of literature suggests that higher organisms can learn to associate perceived changes in the environment with their own actions and use this acquired knowledge to actively pursue these environmental effects (E) by choosing the right action in a given context. To disentangle S-R imprinting and S-R-O learning, the use of “differential outcomes” (DO) has been adopted in a wide range of different paradigms, including the term-defining “DO paradigm” (Trapold and Overmier, 1972), the selective outcome devaluation paradigm (e.g., Colwill and Rescorla, 1985), the selective outcome priming paradigm (e.g., Elsner and Hommel, 2001; Ziessler et al, 2004), and the natural outcome compatibility paradigm (e.g., Hommel, 1993; Kunde, 2001) In all these paradigms different actions do entail a common positive/negative feedback but each action entails a unique outcome. In the natural outcome compatibility paradigm actions that produced the naturally expected effects (e.g., forcefully pushing a button leads to loud tone) were faster as compared to actions that produced the naturally incompatible effect

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.