Abstract

SummaryThe mammary gland (MG) is composed of basal cells (BCs) and luminal cells (LCs). While it is generally believed that MG arises from embryonic multipotent progenitors (EMPs), it remains unclear when lineage restriction occurs and what are the mechanisms responsible for the switch from multipotency to unipotency during MG morphogenesis. Here, we performed multicolor lineage tracing and assessed the fate of single progenitors and demonstrated the existence of a developmental switch from multipotency to unipotency during embryonic MG development. Molecular profiling and single cell RNA-seq revealed that EMPs express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in EMPs promotes unipotent BC fate and was sufficient to reprogram adult LCs into BCs by promoting an intermediate hybrid multipotent like state. Altogether, this study identifies the timing and the mechanisms mediating the early lineage segregation of multipotent progenitors during MG development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.