Abstract

Cold weather is one of the biggest challenges in establishing a large-scale microalgae culture facility in temperate regions. In order to develop a strain that is resistant to low temperatures and still maintains high photosynthetic efficiency, transgenic studies have been conducted targeting many genes. Early light-inducible proteins (ELIPs) located in thylakoid membranes are known to protect photosynthetic machinery from various environmental stresses in higher plants. An ELIP homolog was identified from Chlamydomonas reinhardtii and named ELIP3. The role of the gene was analyzed in terms of photosynthetic CO2 assimilation under cold stress. Western blot results showed a significant accumulation of ELIP3 when the cells were exposed to cold stress (4°C). High light stress alone did not induce the accumulation of the protein. Enhanced expression of ELIP3 helped survival of the cell under photo-oxidative stress. The influx of CO2 to the photobioreactor induced strong accumulation of ELIP3, and enhanced survival of the cell under high light and cold stress. When the oxidative stress was reduced by adding a ROS quencher, TEMPOL, to the media the expression of ELIP3 was reduced. A knockdown mutant showed much lower photosynthetic efficiency than wild type in low temperature, and died rapidly when it was exposed to high light and cold stress. The overexpression mutant survived significantly longer in the same conditions. Interestingly, knockdown mutants showed negative phototaxis, while the overexpression mutant showed positive phototaxis. These results suggest that ELIP3 may be involved in the regulation of the redox state of the cell and takes important role in protecting the photosystem under photooxidative stress in low temperatures.

Highlights

  • Exposure to high light and cold stress causes the accumulation of reactive oxygen species (ROS) in plant cells, and plants have evolved various ROS scavenging machineries (Caverzan et al, 2012; Choudhury et al, 2013)

  • The expression of ELIP3 was detected at 3 h after incubation at 4◦C and gradually increased over time (Figures 1E,F), while the accumulation of the protein was observed from 6 h in light and from 9 h in the dark (Figures 2A,B)

  • Our results suggest that ELIP3 in C. reinhardtii may be a useful target gene to achieve these goals

Read more

Summary

Introduction

Exposure to high light and cold stress causes the accumulation of reactive oxygen species (ROS) in plant cells, and plants have evolved various ROS scavenging machineries (Caverzan et al, 2012; Choudhury et al, 2013). ROS generated in chloroplasts is usually scavenged by the water-water cycle (Asada, 1999), but ROS overproduction due to a combination of high light and low temperature can inhibit the turnover of the D1 protein of the PSII reaction center and lead to photoinhibition (Powles, 1984; Allen and Ort, 2001; Choi et al, 2002; Takahashi and Murata, 2006, 2008). Overproduction of ROS in low temperature leads to oxidative inactivation of Calvin cycle enzymes, and irreversible oxidative damage to chloroplast, and severely inhibits photosynthesis and growth of plants (Kaiser, 1976; Tanaka et al, 1982)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call