Abstract

Stressful events during early-life are risk factors for psychiatric disorders. Brain-derived neurotrophic factor (BDNF) is implicated in psychosis pathophysiology and deficits in BDNF mRNA in animal models of psychiatric disease are reported. DNA methylation can control gene expression and may be influenced by environmental factors such as early-life stress. We investigated BDNF methylation in first-episode psychosis (FEP) patients (n = 58), their unaffected siblings (n = 29) and community-based controls (n = 59), each of whom completed the Childhood Trauma Questionnaire (CTQ); BDNF methylation was also tested in male Wistar rats housed isolated or grouped from weaning. DNA was extracted from human blood and rat brain (prefrontal cortex and hippocampus), bisulphite-converted and the methylation of equivalent sequences within BDNF exon IV determined by pyrosequencing. BDNF methylation did not differ significantly between diagnostic groups; however, individuals who had experienced trauma presented higher levels of methylation. We found association between the mean BDNF methylation and total CTQ score in FEP, as well as between individual CpG sites and subtypes of trauma. No significant correlations were found for controls or siblings with child trauma. These results were independent of age, gender, body mass index, BDNF genotype or LINE-1, a measure of global methylation, which showed no significant association with trauma. Isolation rearing resulted in increased BDNF methylation in both brain regions compared to group-housed animals, a correlate of previously reported changes in gene expression. Our results suggest that childhood maltreatment may result in increased BDNF methylation, providing a mechanism underlying the association between early-life stress and psychosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call