Abstract

Early-life respiratory virus infections have been correlated with enhanced development of childhood asthma. In particular, significant numbers of respiratory syncytial virus (RSV)-hospitalized infants go on to develop lung disease. It has been suggested that early-life viral infections may lead to altered lung development or repair that negatively impacts lung function later in life. Our data demonstrate that early-life RSV infection modifies lung structure, leading to decreased lung function. At 5 wk postneonatal RSV infection, significant defects are observed in baseline pulmonary function test (PFT) parameters consistent with decreased lung function as well as enlarged alveolar spaces. Lung function changes in the early-life RSV-infected group continue at 3 mo of age. The altered PFT and structural changes induced by early-life RSV were mitigated in TSLPR-/- mice that have previously been shown to have reduced immune cell accumulation associated with a persistent Th2 environment. Importantly, long-term effects were demonstrated using a secondary RSV infection 3 mo following the initial early-life RSV infection and led to significant additional defects in lung function, with severe mucus deposition within the airways, and consolidation of the alveolar spaces. These studies suggest that early-life respiratory viral infection leads to alterations in lung structure/repair that predispose to diminished lung function later in life.NEW & NOTEWORTHY These studies outline a novel finding that early-life respiratory virus infection can alter lung structure and function long-term. Importantly, the data also indicate that there are critical links between inflammatory responses and subsequent events that produce a more severe pathogenic response later in life. The findings provide additional data to support that early-life infections during lung development can alter the trajectory of airway function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.