Abstract

Injury occurring in the neonatal period in mammals is known to induce plasticity in pain pathways that may lead to pain dysfunction in later life. Whether these effects are unique to the mammalian nervous system is not well understood. Here, we investigate whether similar effects of early-life injury are found in a large-brained comparative model, the cephalopod Euprymna scolopes. We show that the peripheral nervous system of E. scolopes undergoes profound and permanent plasticity after injury of peripheral tissue in the early post-hatching period, but not after the same injury given in the later juvenile period. Additionally, both innate defensive behaviour and learning are impaired by injury in early life. We suggest that these similar patterns of nervous system and behavioural remodelling that occur in squid and in mammals indicate an adaptive value for long-lasting plasticity arising from early-life injury, and suggest that injuries inflicted in very early life may signal to the nervous system that the environment is highly dangerous. Thus, neonatal pain plasticity may be a conserved pattern whose purpose is to set the developing nervous system's baseline responsiveness to threat. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.