Abstract

BackgroundPer- and polyfluoroalkyl substances (PFAS) exposure has been linked to metabolic health outcomes such as obesity, and changes in adipokine hormones may be one of the underlying biological mechanisms. We prospectively evaluated the associations between prenatal and early childhood exposures to PFASs and adipokines in children. Material and methodsPFAS concentrations were measured in serum samples collected at birth, 18 months, and 5 and 9 years, and adiponectin, leptin, leptin receptor, and resistin were measured in serum samples collected at birth and 9 years. We used multivariable linear regression models to estimate the percent change in serum-adipokine concentrations for a doubling in serum-PFAS concentrations. The potential sex-specific effect of PFAS was assessed by including an interaction term between PFAS and sex in each model. Bayesian kernel machine regression (BKMR) was implemented to evaluate the overall effect of PFAS mixtures. ResultsSignificant associations with leptin, leptin receptor, and resistin at age 9 years were observed for serum-PFAS concentrations at 18 months and 5 and 9 years, whereas associations for PFAS concentrations at birth were mostly null. However, we observed a positive association between serum-PFHxS at birth and leptin receptor at birth. We found limited evidence regarding modification effect of sex on serum-PFAS concentrations. BKMR findings were consistent and suggested some significant effects of the overall PFAS mixtures at 18 months and 5 and 9 years on adipokine concentrations at 9 years. ConclusionsGiven the associations of PFAS exposure with both adipokine hormones and metabolic functions, future studies should include assessment of adipokine hormones when examining PFAS-associated metabolic alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.