Abstract

Early life environmental factors have been associated with altered predisposition to a variety of pathologies. A considerable literature examines pre- and postnatal factors associated with increased risk of cardiovascular, metabolic (i.e. insulin resistance, hyperlipidemia) and psychiatric disease, and the importance of hormonal programming. The brain is exquisitely sensitive to environmental inputs during development and the stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to be both up- and down-regulated by early life exposure to limited nutrition, stress, altered maternal behaviors, synthetic steroids and inflammation. It has been suggested that peri-natal programming of HPA axis regulation might therefore contribute to metabolic and psychiatric disease etiology. In addition, glucocorticoids play modulatory roles regulating many aspects of immune function, notably controlling both acute and chronic inflammatory responses. Neuroendocrine-immune communication is bidirectional, and therefore it is expected that environmental factors altering HPA regulation have implications for stress effects on immune function and predisposition to inflammation. The impact of pre- and postnatal factors altering immune function, stress responsivity and predisposition to inflammatory disease are reviewed. It is also examined whether the early 'immune environment' might similarly influence predisposition to disease and alter neuroendocrine function. Evidence indicating a role for early life inflammation and infection as an important factor programming the neuroendocrine-immune axis and altering predisposition to disease is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call