Abstract
Transient events during development can exert long-lasting effects on organismal lifespan. Here we demonstrate that exposure of Caenorhabditis elegans to reactive oxygen species during development protects against amyloid-induced proteotoxicity later in life. We show that this protection is initiated by the inactivation of the redox-sensitive H3K4me3-depositing COMPASS complex and conferred by a substantial increase in the heat-shock-independent activity of heat shock factor 1 (HSF-1), a longevity factor known to act predominantly during C. elegans development. We show that depletion of HSF-1 leads to marked rearrangements of the organismal lipid landscape and a significant decrease in mitochondrial β-oxidation and that both lipid and metabolic changes contribute to the protective effects of HSF-1 against amyloid toxicity. Together, these findings link developmental changes in the histone landscape, HSF-1 activity and lipid metabolism to protection against age-associated amyloid toxicities later in life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.