Abstract

IntroductionEnvironmental exposures, such as ambient air pollution and household fuel use affect health and under-5 mortality (U5M) but there is a paucity of data in the Global South. This study examined early-life exposure to ambient particulate matter with a diameter of 2.5 µm or less (PM2.5), alongside household characteristics (including self-reported household fuel use), and their relationship with U5M in the Navrongo Health and Demographic Surveillance Site (HDSS) in northern Ghana. MethodsWe employed Satellite-based spatiotemporal models to estimate the annual average PM2.5 concentrations with the Navrongo HDSS area (1998 to 2016). Early-life exposure levels were determined by pollution estimates at birth year. Socio-demographic and household data, including cooking fuel, were gathered during routine surveillance. Cox proportional hazards models were applied to assess the link between early-life PM2.5 exposure and U5M, accounting for child, maternal, and household factors. FindingsWe retrospectively studied 48,352 children born between 2007 and 2017, with 1872 recorded deaths, primarily due to malaria, sepsis, and acute respiratory infection. Mean early-life PM2.5 was 39.3 µg/m3, and no significant association with U5M was observed. However, Children from households using “unclean” cooking fuels (wood, charcoal, dung, and agricultural waste) faced a 73 % higher risk of death compared to those using clean fuels (adjusted HR = 1.73; 95 % CI: 1.29, 2.33). Being born female or to mothers aged 20–34 years were linked to increased survival probabilities. InterpretationThe use of “unclean” cooking fuel in the Navrongo HDSS was associated with under-5 mortality, highlighting the need to improve indoor air quality by introducing cleaner fuels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call