Abstract

Explaining how every typically developing child acquires language is one of the grand challenges of cognitive neuroscience. Historically, language learning provoked classic debates about the contributions of innately specialized as opposed to general learning mechanisms. Now, new data are being brought to bear from studies that employ magnetoencephalograph (MEG), electroencephalograph (EEG), magnetic resonance imaging (MRI), and diffusion tensor imaging (DTI) studies on young children. These studies examine the patterns of association between brain and behavioral measures. The resulting data offer both expected results and surprises that are altering theory. As we uncover what it means to be human through the lens of young children, and their ability to speak, what we learn will not only inform theories of human development, but also lead to the discovery of neural biomarkers, early in life, that indicate risk for language impairment and allow early intervention for children with developmental disabilities involving language.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.