Abstract

Iron deficiency early in life results in neurocognitive deficits that persist into adulthood despite iron treatment. The hippocampus is particularly vulnerable to iron deficiency during the fetal and neonatal periods as evidenced by poorer hippocampus-mediated spatial recognition learning. However, the extent to which early iron deficiency alters interactions between hippocampus-based and extra-hippocampus based learning systems remains undetermined. The present study used an ambiguous maze-learning task to examine the learning process in iron sufficient young adult rats that had recovered from iron deficiency in the fetal and neonatal period. Animals were presented with a stimulus response-learning task in the context of spatial information; a procedure designed to elicit competition between dorsal striatum- and hippocampus-based systems respectively. Formerly iron deficient adult rats showed enhanced stimulus-response learning in the context of competing spatial/distal cue information, a finding suggestive of reduced hippocampal functional influence. The study provides evidence that early iron deficiency alters how different learning systems develop and ultimately interact in adulthood. The potential unbalancing of activity among major memory systems during early life has been postulated by others as a relevant factor underlying the developmental origins of certain psychiatric disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.