Abstract

Reactive oxygen species (ROS) plays a crucial role in pathogenesis of insulin resistance (IR) and type 2 diabetes. In the United Kingdom, Prospective Diabetes Study and its 10-year post-trial monitoring, a beneficial effect of early optimisation of blood glucose control is clearly demonstrated. In this study, we investigated whether ROS scavenger N-acetylcysteine (NAC) and the time point of intervention can affect IR in a diet-induced obesity mouse model. Male C57B/L6 mice were fed chow diet (CD), high-fat high-sucrose diet (HFD), CD + NAC1–6 (NAC intervention 1st to 6th month), HFD + NAC1–6, and HFD + NAC3–6 (NAC intervention 3rd to 6th month) for a 6-month treatment course. HFD group showed significantly increased body weight (BW) and body fat, decreased motor activity (MA), impaired intraperitoneal glucose tolerance test (IPGTT), and insulin tolerance test (IPITT) throughout the study. HFD + NAC1–6, as compared with HFD group, had increased MA, improved IPGTT and IPITT since first month, followed by decreased BW and body fat. HFD + NAC3–6 group, although showed improved IPGTT and IPITT than HFD group, still had higher BW, decreased MA, and impaired IPGTT and IPITT as compared with HFD + NAC1–6 at the end of the study. NAC significantly increased MA, and ameliorated the HFD-induced mitochondrial and intracellular ROS expression, DNA and protein oxidative damage, and adipose tissue inflammation. We concluded that ROS scavenger can improve IR and chronic inflammation in diet-induced obesity mice. This action is likely better expressed through early intervention. The mechanism is probably through a virtuous circle of suppressed oxidative stress, and increased motor activity, which helps to reduce body fat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.