Abstract

The role of ovarian hormones in maintaining neuronal integrity and cognitive function is still debated. This study was undertaken to clarify the potential relationship between postmenopausal hormone use and the cholinergic system. We hypothesized that early initiated hormone therapy (HT) preserves the cholinergic system and that estrogen therapy (ET) would be associated with higher levels of acetylcholinesterase activity in the posterior cingulate cortex and hippocampus compared to estrogen plus progestin therapy (EPT) or no HT. We conducted a cross-sectional study at a university teaching hospital. Fifty postmenopausal women (age, 65.2 ± 0.7 yr) with early long-term HT (n = 34; 13 ET and 21 EPT) or no HT (n = 16) participated in the study. There were no interventions. We measured cholinergic activity (acetylcholinesterase) in the hippocampus and posterior cingulate brain regions as measured by N-[(11)C]methylpiperidin-4-yl propionate and positron emission tomography as a marker of cholinergic function. Significant effects of treatment on cholinergic activity measures were obtained in the left hippocampus (F = 3.56; P = 0.04), right hippocampus (F = 3.42; P = 0.04), and posterior cingulate (F = 3.76; P = 0.03). No significant effects were observed in a cortical control region. Post hoc testing identified greater cholinergic activity in the EPT group compared to the no-HT group in the left hippocampus (P = 0.048) and posterior cingulate (P = 0.045), with a nonstatistically significant trend in the right hippocampus (P = 0.073). A differential effect of postmenopausal ET and EPT on cholinergic neuronal integrity was identified in postmenopausal women. The findings are consistent with a preservation of cholinergic neuronal integrity in the EPT group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.