Abstract

The design of novel biomaterials should directly influence the host-immune system and steer it towards high biocompatibility. To date, new implants/materials have been tested for biocompatibility in vitro in cell cultures and in vivo in animal models. The current methods do not reflect reality (cell cultures) or are very time-consuming and deliver results only after weeks (animal model). In this proof-of-concept study, the suitability of a Whole Blood Stimulation Assay (WBSA) in combination with a Protein Profiler Array (PPA), as a readily available and cost-effective screening tool, was investigated. Three different biomaterials based on poly(lactic-co-glycolic acid (PLGA), calcium sulphate/-carbonate (CS) and poly(methyl methacrylate) (PMMA) were exposed to native whole blood from three volunteers and subsequently screened with a PPA. Individual reproducible protein profiles could be detected for all three materials after 24 h of incubation. The most intense reaction resulted from the use of PLGA, followed by CS. If even marginal differences in implants can be reflected in protein profiles, the combination of WBSA and PPA could serve as an early biocompatibility screening tool in the development of novel biomaterials. This may also lead to a reduction in costs and the amount of animal testing required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.