Abstract

The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms “at the population level” – that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association. However, elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. We investigate whether the extent and relative timecourse of immune-driven HIV adaptation can be inferred via comparative cross-sectional analysis of independent early and chronic infection cohorts. Similarly-powered datasets of linked HLA/HIV-1 genotypes from individuals with early (median < 3 months) and chronic untreated HIV-1 subtype B infection, matched for size (N > 200/dataset), HLA class I and HIV-1 Gag/Pol/Nef diversity, were established. These datasets were first used to define a list of 162 known HLA-associated polymorphisms detectable at the population level in cohorts of the present size and host/viral genetic composition. Of these 162 known HLA-associated polymorphisms, 15% (occurring at 14 Gag, Pol and Nef codons) were already detectable via statistical association in the early infection dataset at p ≤ 0.01 (q < 0.2) – identifying them as the most consistently rapidly escaping sites in HIV-1. Among these were known rapidly-escaping sites (e.g. B*57-Gag-T242N) and others not previously appreciated to be reproducibly rapidly selected (e.g. A*31:01-associated adaptations at Gag codons 397, 401 and 403). Escape prevalence in early infection correlated strongly with first-year escape rates (Pearson’s R = 0.68, p = 0.0001), supporting cross-sectional parameters as reliable indicators of longitudinally-derived measures. Comparative analysis of early and chronic datasets revealed that, on average, the prevalence of HLA-associated polymorphisms more than doubles between these two infection stages in persons harboring the relevant HLA (p < 0.0001, consistent with frequent and reproducible escape), but remains relatively stable in persons lacking the HLA (p = 0.15, consistent with slow reversion). Published HLA-specific Hazard Ratios for progression to AIDS correlated positively with average escape prevalence in early infection (Pearson’s R = 0.53, p = 0.028), consistent with high early within-host HIV-1 adaptation (via rapid escape and/or frequent polymorphism transmission) as a correlate of progression. Cross-sectional host/viral genotype datasets represent an underutilized resource to identify reproducible early pathways of HIV-1 adaptation and identify correlates of protective immunity.

Highlights

  • The reproducible nature of Human immunodeficiency virus type-1 (HIV-1) escape from Human Leukocyte-Antigen (HLA)-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms “at the population level” – that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association

  • HIV-1 escape from Human Leukocyte-Antigen (HLA) class I-restricted CD8+ T-lymphocytes (CTL) occurs in a broadly predictable manner based on the HLA alleles expressed by the host [1]

  • Assembling early and chronic infection cohorts matched for size, HLA and HIV-1 diversity Our study sought to demonstrate that the extent, reproducibility and relative timing of HLA-driven escape in HIV-1 can be inferred via comparative analysis of independent cross-sectional host/ virus genotype datasets from different infection stages

Read more

Summary

Introduction

The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms “at the population level” – that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association Elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. The reproducible nature of viral adaptation allows us to identify HLA-associated polymorphisms in HIV-1 (that is, viral polymorphisms that are significantly over- or under- represented among persons expressing a given HLA allele) “at the population level” (that is, via the analysis of cross-sectional, linked HLA/HIV-1 genotypes via statistical association approaches that correct for various potential confounders [9,10,11,12]) Such studies are normally undertaken in chronic infection, as the virus has undergone a majority of its within-host adaptation by this stage. Given the current evidence and clinical recommendations supporting HIV-1 treatment initiation in early infection [20], prospective longitudinal observational study of untreated HIV-1 infection may no longer be feasible nor ethical moving forward

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call