Abstract

Microfossils have been critical in unravelling the complex postglacial history of Georgian Bay. Thecamoebians (testate amoebae/rhizopods) record paleolimnological conditions, and pollen stratigraphy allows correlation across the basin, where sedimentation has been spatially and temporally discontinuous. Because parts of Georgian Bay have been non-depositional or erosional since the end of the Nipissing transgression (~5,000 (5,800 cal) BP), early Holocene features are exposed on the lakebed. Among these are shoreline features, such as submerged beaches and relict channels, associated with low-level Lake Hough that was driven far below the level of basin overflow. Cores taken throughout Georgian Bay record the existence of closed basin conditions that persisted several centuries around 7,500 (8,300 cal) BP, corresponding to the late Lake Hough lowstand. Evidence for hydrologic closure includes a low-diversity centropyxid-dominated thecamoebian fauna around the boundary between pollen subzones 2a and 2b in the Flowerpot Beach core, Flowerpot and Killarney basins, and in Severn Sound. This low-diversity centropyxid-dominated fauna is interpreted as recording the development of slightly brackish conditions as a result of a hydrologic deficit associated with relatively arid conditions in the Great Lakes basin during the early Holocene pine zone (~8,800–7,200 (9,900–8,050 cal) BP). The rest of the Holocene record in Georgian Bay (where it is preserved) is more diverse and dominated by difflugiid thecamoebians: predominantly Difflugia oblonga prior to human settlement, and Cucurbitella tricuspis since high-density human occupation and agriculture (and resulting eutrophication) began with the Wendat First Nations people around Severn Sound about 750 years ago. The implication that water budget fluctuations leading to discernible variations in lake level and water chemistry occurred in the relatively recent geologic past is significant to studies of global climate change and resource management in the Great Lakes, one of the world’s largest freshwater resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call