Abstract

IntroductionEarly protein and energy feeding in critically ill patients is heavily debated and early protein feeding hardly studied.MethodsA prospective database with mixed medical-surgical critically ill patients with prolonged mechanical ventilation (>72 hours) and measured energy expenditure was used in this study. Logistic regression analysis was used to analyse the relation between admission day-4 protein intake group (with cutoffs 0.8, 1.0, and 1.2 g/kg), energy overfeeding (ratio energy intake/measured energy expenditure > 1.1), and admission diagnosis of sepsis with hospital mortality after adjustment for APACHE II (Acute Physiology and Chronic Health Evaluation II) score.ResultsA total of 843 patients were included. Of these, 117 had sepsis. Of the 736 non-septic patients 307 were overfed. Mean day-4 protein intake was 1.0 g/kg pre-admission weight per day and hospital mortality was 36%. In the total cohort, day-4 protein intake group (odds ratio (OR) 0.85; 95% confidence interval (CI) 0.73 to 0.99; P = 0.047), energy overfeeding (OR 1.62; 95%CI 1.07 to 2.44; P = 0.022), and sepsis (OR 1.77; 95%CI 1.18 to 2.65; P = 0.005) were independent risk factors for mortality besides APACHE II score. In patients with sepsis or energy overfeeding, day-4 protein intake was not associated with mortality. For non-septic, non-overfed patients (n = 419), mortality decreased with higher protein intake group: 37% for <0.8 g/kg, 35% for 0.8 to 1.0 g/kg, 27% for 1.0 to 1.2 g/kg, and 19% for ≥1.2 g/kg (P = 0.033). For these, a protein intake level of ≥1.2 g/kg was significantly associated with lower mortality (OR 0.42, 95%CI 0.21 to 0.83, P = 0.013).ConclusionsIn non-septic critically ill patients, early high protein intake was associated with lower mortality and early energy overfeeding with higher mortality. In septic patients early high protein intake had no beneficial effect on mortality.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-014-0701-z) contains supplementary material, which is available to authorized users.

Highlights

  • Protein and energy feeding in critically ill patients is heavily debated and early protein feeding hardly studied

  • The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated

  • A small observational study, including 50% patients with sepsis, reported a positive association between the change in muscle cross-sectional area in the first 1.5 weeks of ICU stay and protein intake, indicating more pronounced muscle wasting in the case of higher protein intake [13]

Read more

Summary

Introduction

Protein and energy feeding in critically ill patients is heavily debated and early protein feeding hardly studied. Optimal nutrition in terms of supplied energy and protein intake, in critically ill patients remains a topic of discussion. Energy intake during the early phase of critical illness has been addressed. In a post-hoc analysis of the EPaNIC trial, the cumulative amount of protein/amino acid early during ICU stay was associated with delayed recovery [12]. A small observational study, including 50% patients with sepsis, reported a positive association between the change in muscle cross-sectional area in the first 1.5 weeks of ICU stay and protein intake, indicating more pronounced muscle wasting in the case of higher protein intake [13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.