Abstract
We present NuSTAR observations of the nearby SN 2023ixf in M101 (d = 6.9 Mpc) that provide the earliest hard X-ray detection of a nonrelativistic stellar explosion to date at δ t ≈ 4 days and δ t ≈ 11 days. The spectra are well described by a hot thermal bremsstrahlung continuum with T > 25 keV shining through a thick neutral medium with a neutral hydrogen column that decreases with time (initial N Hint = 2.6 × 1023 cm−2). A prominent neutral Fe Kα emission line is clearly detected, similar to other strongly interacting supernovae (SNe) such as SN 2010jl. The rapidly decreasing intrinsic absorption with time suggests the presence of a dense but confined circumstellar medium (CSM). The absorbed broadband X-ray luminosity (0.3–79 keV) is L X ≈ 2.5 × 1040 erg s−1 during both epochs, with the increase in overall X-ray flux related to the decrease in the absorbing column. Interpreting these observations in the context of thermal bremsstrahlung radiation originating from the interaction of the SN shock with a dense medium we infer large particle densities in excess of n CSM ≈ 4 × 108 cm−3 at r < 1015 cm, corresponding to an enhanced progenitor mass-loss rate of M ⊙ yr−1 for an assumed wind velocity of v w = 50 km s−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.