Abstract
Inflammatory gene expression plays a pathological role in acute and chronic hepatic inflammation, yet, inflammation also promotes liver repair by inducing protective mechanisms to limit collateral tissue damage by priming hepatocytes for proliferation. Early growth response (Egr)-1, a transcription factor that regulates inflammatory gene expression, plays a pathological role in many animal models of acute and chronic inflammatory disease. Here, we tested the hypothesis that Egr-1 is beneficial after toxic liver injury. Acute liver injury was induced in wild-type and egr-1-/- mice by a single injection of carbon tetrachloride (CCl(4)). Liver injury, inflammatory, and hepatoprotective gene expression and signaling events were measured 18, 48, and 72 h after CCl(4) administration. Peak liver injury was greater in egr-1-/- mice compared to wild-type mice. Enhanced injury in egr-1-/- mice was associated with reduced tumor necrosis factor (TNF)alpha mRNA and protein expression, reduced Akt phosphorylation and nuclear localization of NFkappaB-p65 in nuclei of cells in the hepatic sinusoid. Expression of inducible nitric oxide synthase and cyclooxygenase-2, TNFalpha-regulated genes that have hepatoprotective function, was attenuated in egr-1-/- mice compared to wild-type mice. Although plasma interleukin (IL)-6 protein and hepatic accumulation of IL-6, glycoprotein 130, and IL-6 receptor alpha mRNA in wild-type and egr-1-/- mice were equivalent, signal transducer and activator of transcription 3 phosphorylation was attenuated in egr-1-/- mice and associated with reduced oncostatin M expression. In contrast to its role in inflammation-mediated tissue injury in other models, Egr-1 expression promotes protection in the liver after CCl(4) exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.