Abstract

While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, little is known about perennials. Among perennials, production of Coffea arabica and C. canephora (robusta) have enormous economic importance worldwide. Three Arabica cultivars (Bourbon, Catimor, Typica) and robusta coffee were grown from germination to ca. 12 months at four CO2 concentrations: 300, 400, 500 or 600 ppm. There were significant increases in all leaf area and biomass markers in response to [CO2] with significant [CO2] by taxa differences beginning at 122–124 days after sowing (DAS). At 366–368 DAS, CO2 by cultivar variation in growth and biomass response among Arabica cultivars was not significant; however, significant trends in leaf area, branch number and total above-ground biomass were observed between Arabica and robusta. For caffeine concentration, there were significant differences in [CO2] response between Arabica and robusta. A reduction in caffeine in coffee leaves and seeds might result in decreased ability against deterrence, and consequently, an increase in pest pressure. We suggest that the interspecific differences observed (robusta vs. Arabica) may be due to differences in ploidy level (2n = 22 vs. 2n = 4x = 44). Differential quantitative and qualitative responses during early growth and development of Arabica and robusta may have already occurred with recent [CO2] increases, and such differences may be exacerbated, with production and quality consequences, as [CO2] continues to increase.

Highlights

  • While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, little is known about perennials

  • Because CO2 represents the sole source of carbon for photosynthesis, and because CO2 levels have been low for the recent geological past (

  • Because interspecific and intraspecific variation exists in response to resource changes, there has been a merited focus on quantifying intraspecific variation that could be used as a means of selection for adaptation to rising [CO2] levels

Read more

Summary

Introduction

While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, little is known about perennials. Any differential growth response within, or between Arabica and robusta to recent and projected increases in CO2 from germination through early growth

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call