Abstract
Experiments were conducted during summer seasons from 1991 to 1994 to find out the effect of winds on early growth of muskmelon. A randomized complete-block design with sheltered and exposed areas as treatments was used. Sensors for air temperature and relative humidity (model HMP35C or model XN217, Campbell Scientific) were placed at canopy height and 3-cup anemometers (model 12102, R.M. Young, Traverse City, Mich.) were 50 cm aboveground. All sensors were connected to CR10 automatic data loggers and recorded hourly average data. Using regression analysis, we found that the accumulative windspeed frequency below threshold (<4 m–s–1) can be used to predict both accumulative hourly heat units of air temperature (GDHT) with R2's more than 0.85 and total muskmelon fresh and dry weight and leaf area index at early growth. Predicted models using accumulative hourly windspeed frequency have R2's >0.80 in sheltered areas. Adding vapor pressure deficit to the model improves the prediction of muskmelon early growth, especially in exposed areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.