Abstract

Abnormal tau phosphorylation (p‐tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p‐tau is controlled by Glycogen Synthase Kinase (GSK)‐3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p‐tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser396 and Ser262after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK‐3β sensitive but AMPK insensitive residues, Ser202/Thr205 (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK‐3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p‐AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p‐tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK‐3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call