Abstract
ABSTRACTGlacial landscapes preserve records of past climate change. Investigating the glacier–climate system over the Late Quaternary provides information about past climate change and context for present‐day glacier response to climate warming. Using 28 beryllium‐10 (10Be) surface exposure dates and snowline reconstructions, we present glacier fluctuations and climate changes for the Antarctic Cold Reversal in the Ahuriri River catchment, Southern Alps of New Zealand (44°7′50″S, 169°38′29″E). Prominent terminal and lateral moraine features from the upper right tributary of the Ahuriri River valley have exposure ages of 14.5 ± 0.3, 13.6 ± 0.3 and 12.6 ± 0.2 ka, suggesting retreat of the glacier during the Antarctic Cold Reversal. Maximum elevation of lateral moraines (MELM) and accumulation area ratio (AAR) suggest snowline elevations at these ages were ≤700, ≤630 and ~360 m lower than today, respectively. This equates to air temperatures ≤3.9, ≤3.5 and 2.3 ± 0.7 °C lower than today (1981–2010), assuming no changes in past precipitation. Ice‐sculpted bedrock surfaces bound by a lateral moraine at nearby Canyon Creek have an age of 13.1 ± 0.3 ka, indicating the moraine correlates with those in the Ahuriri upper right tributary. MELM and AAR reconstructions from the Canyon Creek suggest that snowline elevations at 14.5–13.6 ka were ≤500 or ~380 m lower than today, corresponding to air temperatures ≤2.8 or 2.4 ± 0.7 °C lower than the present‐day (1981–2010). Our results provide insight into the structure of the Antarctic Cold Reversal in the Southern Alps, showing that the largest glacier advance occurred at the start of this interval at c. 14.5 ± 0.3 ka and was followed by gradual retreat. We hypothesize that the early cooling and glacier readvance in New Zealand at the onset of the Antarctic Cold Reversal were triggered by a latitudinal shift of the Southern Hemisphere westerly wind belt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.