Abstract
Samples from asteroid Ryugu returned by the Hayabusa2 mission contain evidence of extensive alteration by aqueous fluids and appear related to the CI chondrites. To understand the sources of the fluid and the timing of chemical reactions occurring during the alteration processes, we investigated the oxygen, carbon and 53Mn–53Cr systematics of carbonate and magnetite in two Ryugu particles. We find that the fluid was initially between 0 and 20 °C and enriched in 13C, 17O and 18O, and subsequently evolved towards lighter carbon and oxygen isotopic compositions as alteration proceeded. Carbonate ages show that this fluid–rock interaction took place within approximately the first 1.8 million years of Solar System history, requiring early accretion either in a planetesimal less than ∼20 km in diameter or within a larger body that was disrupted and reassembled. The aqueous activity responsible for carbonate formation on Ryugu happened much earlier—less than 1.8 million years after CAI formation—than estimates (4–6 Myr) from carbonaceous chondrite meteorites. Ryugu’s parent body either was smaller than ∼20 km in diameter or was disrupted before reaching the high temperatures required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.