Abstract

To evaluate the safety and performance of an implantable near-infrared (NIR) spectroscopy sensor for multi-metabolite monitoring of glucose, ketones, lactate, and ethanol. This is an early feasibility study (GLOW, NCT04782934) including 7 participants (4 with type 1 diabetes (T1D), 3 healthy volunteers) in whom the YANG NIR spectroscopy sensor (Indigo) was implanted for 28 days. Metabolic challenges were used to vary glucose levels (40-400 mg/dL, 2.2-22.2 mmol/L) and/or induce increases in ketones (ketone drink, up to 3.5 mM), lactate (exercise bike, up to 13 mM) and ethanol (4-8 alcoholic beverages, 40-80g). NIR spectra for glucose, ketones, lactate, and ethanol levels analyzed with partial least squares regression were compared with blood values for glucose (Biosen EKF), ketones and lactate (GlucoMen LX Plus), and breath ethanol levels (ACE II Breathalyzer). The effect of potential confounders on glucose measurements (paracetamol, aspartame, acetylsalicylic acid, ibuprofen, sorbitol, caffeine, fructose, vitamin C) was investigated in T1D participants. The implanted YANG sensor was safe and well tolerated and did not cause any infectious or wound healing complications. Six out 7 sensors remained fully operational over the entire study period. Glucose measurements were sufficiently accurate (overall mean absolute (relative) difference MARD of 7.4%, MAD 8.8 mg/dl) without significant impact of confounders. MAD values were 0.12 mM for ketones, 0.16 mM for lactate, and 0.18 mM for ethanol. The first implantable multi-biomarker sensor was shown to be well tolerated and produce accurate measurements of glucose, ketones, lactate, and ethanol. Clinical trial identifier: NCT04782934.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call