Abstract

Failure of hot components in gas turbines often causes catastrophic results. Early fault detection can prevent serious incidents and improve the availability. A novel early fault detection method of hot components is proposed in this article. Exhaust gas temperature is usually used as the indicator to detect the fault in the hot components, which is measured by several exhaust thermocouples with uniform distribution at the turbine exhaust section. The healthy hot components cause uniform exhaust gas temperature (EGT) profile, whereas the hot component faults could cause the uneven EGT profile. However, the temperature differences between different thermocouple readings are also affected by different ambient and operating conditions, and it sometimes has a greater influence on EGT than the faults. In this article, an accurate EGT model is presented to eliminate the influence of different ambient and operating conditions on EGT. Especially, the EGT profile swirl under different ambient and operating conditions is also included by considering the information of the thermocouples’ spatial correlations and the EGT profile swirl angle. Based on the developed EGT model, the detection performance of early fault detection of hot components in gas turbine is improved. The accuracy and effectiveness of the developed early fault detection method are evaluated by the real-world gas turbine data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call