Abstract

This research develops a robust experimental procedure to monitor the evolution of early fatigue damage in AZ31 magnesium alloy with the acoustic nonlinearity parameter , and demons- trats its reliability by measuring the linear relationship between amplitudes of the second-harmonic waves and fundamental waves squared. Using this system, of two sets of specimens with different stress level is measured. The experimental results show that there is a significant increase in linked to fatigue degree in the early stages of fatigue life and reaches the maximum about 55%of fatigue life, when the stress level is ±60%of the yield stress, can characterize the early fatigue damage of magnesium alloy. However, when the stress level is ±70%of the yield stress, there is a regular fluctuation in linked to fatigue degree, this experimental results can’t be explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.