Abstract

Obesity is independently associated with increased cardiovascular risk. However, since established obesity clusters with various cardiovascular risk factors, configuring the metabolic syndrome, the early effects of obesity on vascular function are still poorly understood. The current study was designed to evaluate the effect of early obesity on coronary endothelial function in a new animal model of swine obesity. As to method, juvenile domestic crossbred pigs were randomized to either high-fat/high-calorie diet (HF) or normal chow diet for 12 wk. Coronary microvascular permeability and abdominal wall fat were determined by using electron beam computerized tomography. Epicardial endothelial function and oxidative stress were measured in vitro. Systemic oxidative stress, renin-angiotensin activity, leptin levels, and parameters of insulin sensitivity were evaluated. As a result, HF pigs were characterized by abdominal obesity, hypertension, and elevated plasma lysophosphatidylcholine and leptin in the presence of increased insulin sensitivity. Coronary endothelium-dependent vasorelaxation was reduced in HF pigs and myocardial microvascular permeability increased compared with those values in normal pigs. Systemic redox status in HF pigs was similar to that in normal pigs, whereas the coronary endothelium demonstrated higher content of superoxide anions, nitrotyrosine, and NADPH-oxidase subunits, indicating increased tissue oxidative stress. In conclusion, the current study shows that early obesity is characterized by increased vascular oxidative stress and endothelial dysfunction in association with increased levels of leptin and before the development of insulin resistance and systemic oxidative stress. Vascular dysfunction is therefore an early manifestation of obesity and might contribute to the increased cardiovascular risk, independently of insulin resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.