Abstract

Although it is fairly established that Gravitational Instability (GI) should occur in the early phases of the evolution of a protoplanetary disc, the fate of the clumps resulting from disc fragmentation and their role in planet formation is still unclear. In the present study we investigate semi-analytically their evolution following the contraction of a synthetic population of clumps with varied initial structure and orbits coupled with the surrounding disc and the central star. Our model is based on recently published state-of-the-art 3D collapse simulations of clumps with varied thermodynamics. Various evolutionary mechanisms are taken into account, and their effect is explored both individually and in combination with others: migration and tidal disruption, mass accretion, gap opening and disc viscosity. It is found that, in general, at least 50 per cent of the initial clumps survive tides, leaving behind potential gas giant progenitors after ˜105 yr of evolution in the disc. The rest might either be disrupted or produce super-Earths and other low-mass planets provided that a solid core can be assembled on a sufficiently short time-scale, a possibility that we do not address in this paper. Extrapolating to million year time-scales, all our surviving protoplanets would lead to close-in gas giants. This outcome might in part reflect the limitations of the migration model adopted, and is reminiscent of the analogous result found in core-accretion models in absence of fine-tuning of the migration rate. Yet it suggests that a significant fraction of the clumps formed by GI could be the precursors of Hot Jupiters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.