Abstract

The photochemistry of para- and ortho-biphenylyl azides and 1-naphthyl azide was studied by ultrafast spectroscopy. In every case, the singlet azide second excited states were observed by transient absorption spectroscopy and were found to have lifetimes of hundreds of femtoseconds. The decay of the S(2) states of the azides was accompanied by the growth of transient absorption of the corresponding singlet nitrenes. The intermediate S(1) state of the azides could not be observed due to its low instantaneous concentration resulting from fast fragmentation and nitrene formation. Quantum chemical calculations predict that the S(2) state of the azide is bound and that there is a much lower barrier toward arylnitrene formation from the S(1) state of the azide. Vibrational cooling of para-biphenylnitrene (11 ps) was experimentally observed. The lifetime of singlet ortho-biphenylnitrene was 16 ps in acetonitrile and was not affected by perdeuteration of the aryl ring. The lifetime of singlet 1-naphthylnitrene is 12 ps in acetonitrile at ambient temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.