Abstract

Alterations in membrane fluidity are among the early events in plants that detect changes in ambient temperature. However, signal transduction downstream of the membrane-associated processes is still not well understood. We have focused here on the role of hydrogen peroxide (H(2)O(2)) in high-temperature signalling in relation to changes in membrane fluidity in cells of tobacco (Nicotiana tabacum L.) cv. Bright Yellow 2 (BY2). As final indicators of the heat-signalling cascade, we have monitored the synthesis of small heat-shock proteins (sHSPs). Elevation of temperature between 32 and 38 degrees C resulted in a fast, transient stimulation of H(2)O(2) production in the tobacco cells. A similar H(2)O(2) burst could be induced at lower temperatures (28-32 degrees C) by membrane fluidization using benzyl alcohol (BA). Diphenylene iodonium (DPI), a NADPH oxidase inhibitor, prevented both the heat- and BA-triggered H(2)O(2) rise. The synthesis of sHSPs (14.5 and 16 kDa) was shifted to lower temperatures by BA application and was suppressed by DPI treatment in the same way. The results indicate that H(2)O(2) is an early component of the heat-signalling pathway, which responds rapidly to changes in membrane fluidity and is required for the activation of sHSP synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.