Abstract

The symbiosis between Gunnera and Nostoc was reconstituted using G. chilensis Lam. and G. manicata Linden, respectively, and three different Nostoc strains. Six stages characterised by specific modifications in both the cyanobiont and the host were recognised during the infection process. Mucilage-secreting stem glands developed on the Gunnera stems independent of the presence of cyanobacteria (Stage I). Soon after addition of the Nostoc isolates to the plant apices, an abundant differentiation of motile hormogonia commenced. The cyanobacteria accumulated in the mucilage on the surface of the gland (Stage II), and the hormogonia then proceeded into the stem tissue through intercellular channels (Stage III). At the channel bases, Nostoc was detected between the cell walls of small, densely cytoplasmic Gunnera cells and also in elaborate folds of these (Stage IV). The Gunnera cell walls subsequently dissolved adjacent to the cyanobacteria and Nostoc entered the host cells (Stage V). Once the intracellular association was formed, a high proportion of the vegetative Nostoc cells differentiated into heterocysts (Stage VI). Nostoc changed from being rich in inclusions (particularly cyanophycin) while on the gland surface into a comparatively "non-storing" form during penetration and the early intracellular stages. Bacteria were numerous on the gland surface, fewer in the channels, and were never detected within the Gunnera cells, indicating the existence of specific recognition mechanisms discriminating between conceivable microsymbionts. Mechanisms behind mutual adaptations and interactions between the two symbionts are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call