Abstract

BackgroundUnderstanding Aβ aggregation and inhibiting it at early stages is of utmost importance in treating Alzheimer's and other related amyloidogenic diseases. However, majority of the techniques to study Aβ aggregation mainly target the late stages; while those used to monitor early stages are either expensive, use extrinsic dyes, or do not provide information on molecular level interactions. Here, we investigate the early events of Aβ16-22(KLVFFAE) aggregation using Aβ16-22 derived switch-peptides (SwPs) through a novel label-free approach employing Protein Charge Transfer Spectra (ProCharTS). ResultsWhen pH is increased from 2 to 7.2, the Aβ-derived switch peptides undergo controlled self-assembly, where the initial random coil peptides convert into β-sheet. We leveraged the intrinsic absorbance/luminescence arising from ProCharTS among growing peptide oligomers to observe the aggregation kinetics in real-time. In comparison to monomer, the lysine and glutamate headgroups in the peptide oligomer are expected to come in proximity enhancing ProCharTS intensity due to photoinduced electron transfer. With a combination of Aβ-derived switch-peptides and ProCharTS, we obtained structural insights on the early stages of Aβ-derived SwP aggregation in four unique peptides. Increase in scatter corrected ProCharTS absorbance (250–500 nm) and luminescence (320–720 nm) along with decreased mean luminescence lifetime (2.3–0.8 ns) characterize the initial stages of aggregation monitored for 1–96 h depending on the peptide. We correlated the results with Circular Dichroism (CD), 8-anilino-1-naphthalenesulfonic acid (ANS) and Thioflavin T (ThT) measurements. SignificanceWe demonstrate ProCharTS as an intrinsic analytical probe with following advantages over other conventional methods to track aggregation: it is a label-free probe; it's intensity can be measured using a UV–Vis spectrophotometer; it is more sensitive in detecting the early molecular events in aggregation compared to ANS and ThT; and it can provide information on specific contacts made between charged headgroups of Lysine/Glutamate in the oligomer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.