Abstract

The consequences of H(2)O(2)/Fe(2+)-induced oxidative stress on translocation of ethanolamine phosphoglyceride (EPG) and serine phosphoglyceride (SPG) were studied in an oligodendroglia-like cell line (OLN 93) following 3 days of supplementation with 0.1 mM docosahexaenoic acid (DHA) and a series of polar head group precursors, including N-monomethyl- and N,N-dimethylethanolamine at millimolar concentrations. Added DHA was predominantly esterified in EPG species and those cells enriched in DHA showed enhanced sensitivity to oxidative stress and eventually died by apoptosis. Co-supplements with ethanolamine and DHA resulted in a rapid, but transient, EPG translocation with a maximum at 30 min following stress, as characterized by a trinitrobenzenesulfonic acid reagent. There was no significant translocation of SPG as evidenced by annexin V binding. Unlike SPG, which is usually irreversibly translocated to subserve as a tag for phagocytosis, EPG acted as a signaling molecule with biphasic kinetic characteristics. N-Monomethyl- and N,N-dimethylethanolamine supplements reduced EPG synthesis, prevented its externalization and rescued cells from apoptotic death. Following stress, the fatty acid profile of the externalized EPG showed marked losses in polyunsaturated fatty acids and aldehydes compared with the remaining intracellular EPG. Prevention of EPG species selective translocation to the outer membrane leaflet by altering phospholipid asymmetry may be important in the mechanism of rescue from cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.