Abstract

Sea floor spreading anomalies in the Lofoten-Greenland basins reveal an unstable plate boundary characterized by several small-offset transforms for a period of ∼4 m.y. after opening. North of the Jan Mayen Fracture Zone, integrated analysis of magnetic and seismic data also document a distinct, persistent magnetic anomaly associated with the continent-ocean boundary and a locally, robust anomaly along the inner boundary of the break-up lavas. These results provide improved constraints on early opening plate reconstructions, which include a new anomaly 23-to-opening pole of rotation yielding more northerly relative motion vectors than previously recognized; and a solution of the enigmatic, azimuthal difference between the conjugate Eocene parts of the Greenland-Senja Fracture Zone if the Greenland Ridge is considered a continental sliver. The results confirm high, 2.36–2.40 cm yr−1, early opening spreading rates, and are consistent with the start of sea floor spreading during Chron 24r. The potential field data along the landward prolongations of the Bivrost Fracture Zone suggest that its location is determined by a Mesozoic transfer system which has acted as a first-order, across-margin tectono-magmatic boundary between the regional Jan Mayen and Greenland-Senja Fracture Zone systems, greatly influencing the pre-, syn- and post-breakup margin development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.