Abstract

There is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2). We independently defined regions of interest (ROIs) involved in verbal and quantity processing using rhyming and numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and bilateral middle frontal gyri (MFG)/right IFG. Participants also solved a single-digit subtraction task in the scanner. We defined the extent to which children relied on verbal vs. quantity mechanisms by selecting the 100 voxels showing maximal activation at time 1 from each ROI, separately for small and large subtractions. We studied the brain mechanisms at time 1 that predicted gains in subtraction fluency and how these mechanisms changed over time with improvement. When looking at brain activation at time 1, we found that improvers showed a larger neural problem size effect in bilateral parietal cortex, whereas no effects were found in verbal regions. Results also revealed that children who showed improvement in behavioral fluency for large subtraction problems showed decreased activation over time for large subtractions in both parietal and frontal regions implicated in quantity, whereas non-improvers maintained similar levels of activation. All children, regardless of improvement, showed decreased activation over time for large subtraction problems in verbal regions. The greater parietal problem size effect at time 1 and the reduction in activation over time for the improvers in parietal and frontal regions implicated in quantity processing is consistent with the Schema-based hypothesis arguing for more automatic procedures with increasing skill. The lack of a problem size effect at time 1 and the overall decrease in verbal regions, regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.

Highlights

  • Failing math in sixth grade is a significant predictor of not graduating from high school (Belfanz et al, 2007) and math ability at age 7 predicts socioeconomic status at age 42 (Ritchie and Bates, 2013)

  • The objective of this study was to fill this gap in the literature by answering the questions: Can reliance on verbal vs. quantity mechanisms at time 1 predict longitudinal gains in subtraction fluency, and how do these mechanisms change over time with improvement in subtraction fluency? In order to have stronger evidence for the involvement of verbal vs. quantity mechanisms, regions of interest (ROIs) were independently localized for each participant using rhyming and numerosity judgment localizer tasks, respectively

  • When examining the role of brain activation at time 1 in predicting longitudinal gains in subtraction fluency we found that improvers showed a larger neural problem size effect in bilateral intraparietal sulcus (IPS) at time 1, with greater activation for large subtractions as compared to small ones

Read more

Summary

Introduction

Failing math in sixth grade is a significant predictor of not graduating from high school (Belfanz et al, 2007) and math ability at age 7 predicts socioeconomic status at age 42 (Ritchie and Bates, 2013). Others, relying on self-report, found that 5th graders use more retrieval and less counting to solve subtraction problems as compared to 3rd graders, who reported using more procedures (Caviola et al, 2018). According to this hypothesis, educated adults have had enough experience with arithmetic to be able to retrieve single-digit subtractions directly from memory (Siegler, 1989; Geary et al, 1993)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.