Abstract

The early stress of Maternal Separation (MS) contributes to the establishment of adult psychopathology. The serotonergic (5-HT) system is implicated during this temporal window in mediating the development of mood-related behaviors. MS is reported to evoke altered 5-HT2A receptor function in adulthood. However, the ontogeny of altered 5-HT2A receptor responsivity following MS remains unknown. Here, we examined 5-HT2A receptor agonist, DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) (2mg/kg) evoked responses, namely stereotypical head-twitch behaviors in control and MS Sprague-Dawley rat pups at postnatal day 21 (P21). MS involved a separation of pups from the dam for 3h daily from postnatal day 2–14. MS pups at P21 exhibited significantly enhanced head-twitch behaviors compared to controls. Using c-Fos cell counting we examined neural activation in control and MS pups following DOI treatment. MS pups exhibited altered DOI-evoked c-Fos expression within all mPFC subdivisions, but not in the hippocampus, lateral septum and hypothalamus, suggesting differential prefrontal neural activation upon 5-HT2A receptor stimulation following early stress. Gene profiling of 5-HT2A receptor-regulated immediate early genes (IEGs) indicated a decline in the expression of Fos, Fra1 and Egr1 mRNA under baseline conditions in the mPFC of MS pups. MS pups also showed an altered pattern in the regulation of several 5-HT2A receptor-regulated IEGs (Fos, Fra1, Bdnf, Egr1, Egr3) following DOI treatment. Collectively, these results highlight an early emergence of altered 5-HT2A receptor-evoked behavioral responses and neural activation patterns in multiple brain regions in animals with a history of MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.