Abstract

BackgroundAnnelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.ResultsOwenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally.ConclusionsOwenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.

Highlights

  • Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleav‐ age and a variety of larval forms

  • Most modern molecular studies of annelid embryogenesis have focused on species belonging to the two most diverse groups, namely Sedentaria and Errantia, which together form Pleistoannelida [4, 8,9,10] (Fig. 1a)

  • Wilson [16] focused on morphological descriptions of the idiosyncratic mitraria larva up to metamorphosis in Owenia fusiformis Delle Chiaje, 1844, without providing much information about embryogenesis

Read more

Summary

Introduction

Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleav‐ age and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a mem‐ ber of the sister group to all remaining annelids and a key lineage to understand annelid and spiralian evolution and development. The current annelid phylogeny shows Pleistoannelida as a deeply nested clade, with up to five intermediate lineages between this group and the last common annelid ancestor [11,12,13] (Fig. 1a). Investigating these other early branching lineages, and in particular Palaeoannelida (Oweniidae + Magelonidae) as the sister taxon to all other annelids (Fig. 1a), is fundamental to uncover the origins and early diversification of Annelida [12, 14, 15]. The early development of O. fusiformis has not been described yet, and a systematic and detailed description of the major morphogenetic events after gastrulation and during larval development is lacking

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call