Abstract

Metabolic syndrome (MS) is a cluster of metabolic signs that increases the risk of developing type 2 two diabetes mellitus and cardiovascular diseases. MS leads to pancreatic beta cell exhaustion and decreased insulin secretion through unknown mechanisms in a time-dependent manner. ATP-sensitive potassium channels (KATP channels), common targets of anti-diabetic drugs, participate in the glucose-stimulated insulin secretion, coupling the metabolic status and electrical activity of pancreatic beta cells. We investigated the early effects of MS on the conductance, ATP and glybenclamide sensitivity of the KATP channels. We used Wistar rats fed with a high-sucrose diet (HSD) for 8 weeks as a MS model. In excised membrane patches, control and HSD channels showed similar unitary conductance and ATP sensitivity pancreatic beta cells in their KATP channels. In contrast, MS produced variability in the sensitivity to glybenclamide of KATP channels. We observed two subpopulations of pancreatic beta cells, one with similar (Gly1) and one with increased (Gly2) glybenclamide sensitivity compared to the control group. This study shows that the early effects of MS produced by consuming high-sugar beverages can affect the pharmacological properties of KATP channels to one of the drugs used for diabetes treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call