Abstract

ABSTRACT In order to explore how the early internal rotational properties of star clusters are affected by the external potential of their host galaxies, we have run a suite of N-body simulations following the early dynamical evolution and violent relaxation of rotating star clusters embedded in a tidal field. Our study focuses on models for which the cluster’s rotation axis has a generic orientation relative to the torque of the tidal field. The interaction between the violent relaxation process, angular momentum of the cluster, and the external torque creates a complex kinematic structure within the cluster, most prominently a radial variation in the position of the rotation axis, along both the polar and azimuthal directions. We also examine the cluster’s velocity dispersion anisotropy and show that the projected anisotropy may be affected by the variation of the rotation axis directions within the cluster; the combination of projection effects and the complex kinematical features may result in the measurement of tangential anisotropy in the cluster’s inner regions. We also characterize the structural properties of our clusters as a function of their initial rotation and virial ratio and find that clusters may develop a triaxial morphology and a radial variation of the minor axis not necessarily aligned with the rotation axis. Finally, we examine the long-term evolution of these complex kinematic features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call