Abstract
The neurochemical profile was examined at postnatal day 3–4 in mutant mice generated by in vivo Cre mediated activation of an attenuated diphtheria toxin gene inserted into the D1 dopamine receptor gene locus. An earlier study of this model had shown that D1 dopamine receptor, substance P and dynorphin were not expressed in the striatum. Quantitative in situ hybridization analysis showed an increase in D2 dopamine receptor and enkephalin messenger RNA expression. The nigrostriatal pathway in the mutant pups was intact with a normal number of dopaminergic neurons in the substantia nigra and the ventral tegmental area in addition to a normal pattern of striatal dopamine transporter and tyrosine hydroxylase immunoreactivity. Quantitative analysis of striatal dopamine transporter density using [ 3H]mazindol showed a reduction of 26% suggesting a degree of transneuronal down-regulation. There was also a 49% reduction of striatal GABA receptor binding and a 36% reduction of striatal muscarinic receptor binding in mutant pups. The number of healthy striatal neuropeptide Y-containing interneurons was also substantially down-regulated in the mutant striatum. In contrast, there was an increase in the number of striatal cholinergic interneurons. Down-regulated cortical GABA receptor and muscarinic receptor binding was also observed in addition to subtle morphological changes in the neuropeptide Y-expressing population of cortical neurons. The changes reflect the early cascade of events which follows the ablation of D1 dopamine receptor-positive cells. Although extensive changes in a number of striatal and cortical neurons were demonstrated, only subtle transneuronal effects were seen in the nigrostriatal pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.