Abstract

BackgroundThis study was aimed to assess whether ultrasonic spectrum analysis of radiofrequency (RF) time series using a clinical ultrasound system allows for early differentiating between the chemotherapy responders and nonresponders in human breast cancer xenografts that imitate clinical responding and nonresponding tumors.MethodsClinically responding (n = 20; MCF-7) and nonresponding (n = 20; MBA-MD-231) breast cancer xenografts were established in 40 nude mice. Ten mice from each group received either chemotherapy (adriamycin, 4 mg/kg) or saline as controls. Each tumor was imaged longitudinally with a clinical ultrasound scanner at baseline (day 0) and subsequently on days 2, 4, 6, 8 and 12 following treatment, and the corresponding RF time-series data were collected. Changes in six RF time-series parameters (slope, intercept, S1, S2, S3 and S4) were compared with the measurement of the tumor cell density, and their differential performances of the treatment response were analyzed.ResultsAdriamycin significantly inhibited tumor growth and decreased the cancer cell density in responders (P < 0.001) but not in nonresponders (P > 0.05). Fold changes of slope were significantly increased in responders two days after adriamycin treatment (P = 0.002), but not in nonresponders (P > 0.05). Early changes in slope on day 2 could differentiate the treatment response in 100% of both responders (95% CI, 62.9–100.0%) and nonresponders (95% CI, 88.4–100%).ConclusionsUltrasonic RF time series allowed for the monitoring of the tumor response to chemotherapy and could further serve as biomarkers for early differentiating between the treatment responders and nonresponders.

Highlights

  • This study was aimed to assess whether ultrasonic spectrum analysis of radiofrequency (RF) time series using a clinical ultrasound system allows for early differentiating between the chemotherapy responders and nonresponders in human breast cancer xenografts that imitate clinical responding and nonresponding tumors

  • According to the Response Evaluation Criteria in Solid Tumor (RECIST), the evaluation of the treatment response frequently depends on changes in the tumor size measured by computed tomography (CT) or magnetic resonance imaging (MRI) examination after the end of a therapeutic protocol [2]

  • Effect of chemotherapy on the tumor volume All mice were included in the final analysis

Read more

Summary

Introduction

This study was aimed to assess whether ultrasonic spectrum analysis of radiofrequency (RF) time series using a clinical ultrasound system allows for early differentiating between the chemotherapy responders and nonresponders in human breast cancer xenografts that imitate clinical responding and nonresponding tumors. According to the Response Evaluation Criteria in Solid Tumor (RECIST), the evaluation of the treatment response frequently depends on changes in the tumor size measured by computed tomography (CT) or magnetic resonance imaging (MRI) examination after the end of a therapeutic protocol [2]. These changes tend to be apparent several weeks to months later, limiting the use of the early differentiation between reatment responders and nonresponders. The application of such imaging techniques can be limited by the relative expensive cost, risks of exposure to radiation, possible allergies to contrast agents, and injection of radioactive tracer isotopes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call