Abstract

Cardiovascular diseases (CVDs) are significant health issues that result in high death rates globally. Early detection of cardiovascular events may lower the occurrence of acute myocardial infarction and reduce death rates in people with CVDs. Traditional data analysis is inadequate for managing multidimensional data related to the risk prediction of CVDs, heart attacks, medical image interpretations, therapeutic decision-making, and disease prognosis due to the complex pathological mechanisms and multiple factors involved. Artificial intelligence (AI) is a technology that utilizes advanced computer algorithms to extract information from large databases, and it has been integrated into the medical industry. AI methods have shown the ability to speed up the advancement of diagnosing and treating CVDssuch as heart failure, atrial fibrillation, valvular heart disease, hypertrophic cardiomyopathy, congenital heart disease, and more. In clinical settings, AI has shown usefulness in diagnosing cardiovascular illness, improving the efficiency of supporting tools, stratifying and categorizing diseases, and predicting outcomes. Advanced AI algorithms have been intricately designed to analyze intricate relationships within extensive healthcare data, enabling them to tackle more intricate jobs compared to conventional approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.