Abstract

Accurate classification of Alzheimer’s Disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI) are critical for the effective treatment of AD. However, compared with AD classification tasks, predicting the conversion of MCI to AD is relatively difficult. as there are only minor differences among MCI groups. What’s more, in brain imaging analysis, the high dimensionality and relatively small number of subjects brings challenges to computer-aided diagnosis of AD and MCI. Many previous researches focused on the identification of imaging biomarkers for AD diagnosis. In this paper, we introduce sparse logistic regression for the early diagnosis of AD. Sparse logistic regression (SLR) uses L1/2 regularization to impose a sparsity constraint on logistic regression. The L1/2 regularization is considered a representative of Lq regularization, where fewer but informative key brain regions are applied for the classification of AD/MCI. We evaluated the SLR on 197 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results showed that the SLR improves the classification performance of AD/MCI compared other classical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.