Abstract
(1) Background: According to the World Health Organization (WHO), 6.3 million intrauterine fetal deaths occur every year. The most common method of diagnosing perinatal death and taking early precautions for maternal and fetal health is a nonstress test (NST). Data on the fetal heart rate and uterus contractions from an NST device are interpreted based on a trace printer's output, allowing for a diagnosis of fetal health to be made by an expert. (2) Methods: in this study, a predictive method based on ensemble learning is proposed for the classification of fetal health (normal, suspicious, pathology) using a cardiotocography dataset of fetal movements and fetal heart rate acceleration from NST tests. (3) Results: the proposed predictor achieved an accuracy level above 99.5% on the test dataset. (4) Conclusions: from the experimental results, it was observed that a fetal health diagnosis can be made during NST using machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.