Abstract

Fluorescence at wavelengths characteristic of humic substances (excitation 350 nm, emission 450 nm) have been used in this study to approximate concentrations of fluorescent dissolved organic material (FDOM). In situ regulated and unregulated benthic chambers, sediment cores, and laboratory tank incubations were used to study early diagenesis of FDOM in coastal marine sediments of the Gullmar Fjord, western Sweden. In the regulated in situ chambers, pH and oxygen were kept at relatively stable levels, while in the unregulated in situ chambers, pH and oxygen were left to decrease as a result of biological activity. FDOM porewater distributions and correlation between FDOM and parameters indicating mineralization showed that FDOM was formed in the sediment and should flux across the sediment-water interface. A substantial flux of FDOM was also observed during winter and spring conditions and during anoxic conditions fall. However, no flux was observed during oxic conditions fall. Modeling indicated that oxygen penetration depth was deeper during winter than during fall, i.e., the oxygen penetration depth increased during fall towards winter values. We suggest that as FeOOH was formed when oxygen penetration depths increased, FROM was sorbed to newly formed FeOOH, inhibiting FDOM flux over the sediment-water interface. In addition, at onset of anoxic conditions in the sediment surface layer in fall incubations, FDOM flux from sediment to overlying water increased substantially. Increases in anoxic FDOM fluxes were accompanied by increases in Fe and phosphate fluxes. We suggest that reductively dissolved FeOOH released sorbed FDOM. FDOM released from FeOOH by anoxic conditions was not resorbed when oxic conditions were resumed. This could be an effect of higher pH in overlying water as compared with porewater, inhibiting FeOOH sorption of FDOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.