Abstract

The vertical distributions of dissolved Se species [Se(IV), Se(VI) and organic Se] and diagenetic constituents [Fe(II) and Mn(II)] were obtained in porewater samples of two Sudbury area lakes (Clearwater and McFarlane). The sedimentary concentration profiles of total Se, Se species bound to Fe–Mn oxyhydroxides and to organic matter, and of elemental Se were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicated that the concentrations of total dissolved Se in porewater samples were very low, varying from around 2.0 nM to a maximum level of 6.5 nM, while the concentrations of total Se species in the solid phase varied between 2 and 150 nmol/g on a dry weight basis. The two lakes showed striking differences in the presence of Se(IV) and Se(VI) at the sediment–water interface (SWI). In Clearwater Lake, Se(VI) was present at this interface and Se(IV) was not detectable, whereas the opposite was found in McFarlane Lake. This suggests that reducing conditions might have existed near the SWI of McFarlane Lake at the sampling time; this hypothesis was confirmed by several other measured chemical parameters. The profiles of total dissolved Se of both lakes suggest upward and downward diffusion of dissolved Se species along the concentration gradients. Assuming that no precipitation occurred at the SWI, the fluxes of dissolved Se species across the SWI in Clearwater and McFarlane lakes were estimated to be 0.108 and 0.034 nmol cm −2 a −1, respectively. These values do not include the possible losses of volatile Se species due to microbial methylation. In the reducing sediments of both lakes, the formation of elemental Se and pyritic Se were found to be important mechanisms for controlling the solubility of Se in this environment. The main geochemical processes involving Se identified in this study are: the adsorption of Se onto Fe–Mn oxyhydroxides at or near the SWI, the release of adsorbed Se by the reduction of the same oxyhydroxides and the mineralization of organic matter, and the removal of Se from porewaters to form elemental Se and a S mineral phase such as Se–pyrite or pure ferroselite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call