Abstract

Benthically derived shoal-water carbonate mineralogies are an important source of sediment for oceanic slopes. In the Pacific, mid-depth banks (average depth between 50 and 100 m) are sites of significant benthic carbonate production. Because of their open morphology, these banks act as carbonate particle sources for the open ocean. The potential early diagenesis of these particles in the open-ocean realm is discussed in light of their solubility, dissolution rates, and importance in the global cycle of carbonate in the ocean. These carbonate particles are more soluble and kinetically reactive than their pelagic counterparts. From sediment trap and seawater carbonate chemistry investigations on Penguin Bank, Necker, and Maro reefs in the northwestern Hawaiian Islands, and a tentative model of the global cycle of inorganic carbon in the ocean, the authors conclude the following. (1) Benthically derived shallow-water carbonate particles can account for about 10% of the global sedimentation flux of open-ocean carbonate sediments. Much of this sedimentation occurs on oceanic slopes. (2) This flux of benthic carbonates, if dissolved in the open ocean, can represent an additional sink for fossil fuel CO{sub 2}, amounting to a few percent of the atmospheric increases in CO{sub 2} of 1.4 ppmv/y{sup {minus}1}. (3) Thismore » component of inorganic carbon in the ocean may account for 25% of the observed alkalinity excess of the intermediate-depth alkalinity maximum of the western North Pacific. (4) The relative importance and degree of coupling of shoal-water and open-ocean carbonate accumulation are important factors in terms of the Phanerozoic history of atmospheric CO{sub 2} levels.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call