Abstract
Interstitial waters were extracted from cores at three locations in the eastern equatorial Pacific and analyzed for nutrients, dissolved carbonate species, Mn and Fe. From the depth variation in pore water chemistry, we infer that organic matter oxidation reactions occur with depth in the following sequence: O 2 reduction, NO 3 − and MnO 2 reduction, and then ferric iron reduction. From NO 3 − results we infer that O 2 is largely or totally consumed within the top few centimeters of sediment. NO 3 − is completely reduced at a sediment depth of 20 cm at a site near the crest of the East Pacific Rise, but is preserved at levels of 20–30 μmol/kg at 40 cm depth at a Guatemala Basin site. We have calculated the alkalinity for pore water samples assuming ions diffuse according to relative ionic diffusion coefficients, that the stoichiometry of organic matter oxidation reactions is that of “Redfield” organic matter, and that the pore waters are saturated throughout with respect to CaCO 3. The measured alkalinity increase is only about half of the predicted value. The difference is probably a result of either enhanced mixing of the pore water in the top few centimeters of sediments by biological or physical processes, or the occurrence of an inorganic reaction which consumes alkalinity. At depths of oxygen and nitrate reduction in the sediments, the ion concentration product of CaCO 3 is the same, within the analytical error, as the solubility product of Ingle et al. [34] at 1 atm and 4°C. This result indicates CaCO 3 resaturation on pressure change during coring. Where pore water Mn concentrations become measurable, the ion concentration product increases, indicating either supersaturation with respect to calcite or that another phase is controlling the carbonate solubility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Earth and Planetary Science Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.